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Abstract-Due to the formation of small inelastic zones near crack edges, brittle fracture and crack
propagation involve dislocation-crack edge interaction. An approximate transient solution for a
single screw dislocation moving near a propagating Mode III crack is obtained here, and used to
study dislocation arrays which exist prior to fracture in circular zones around the crack edge.
Using dislocation force concepts, it is found that these dislocations coalesce into bands near the
crack surface when fracture is triggered by SH-wave diffraction and, if their speeds exceed that of
the crack edge, collapse onto the crack surface itself. Moreover, this dislocation motion has a
noticeable if brief effect on the dynamic stress intensity factor.

J. INTRODUCTION

Brittle fracture is often associated with the formation of small inelastic zones at the crack
edges[l]. Because inelastic regions are characterized by dislocation fields[2J, it follows
that brittle fracture itself must involve a process of dislocation-crack edge interaction[3].

Much of the existing analysis of such interaction is quasi-static, e.g. Refs [4-6J, with
little application, therefore, to dynamic brittle fracture. Transient analyses of largely
arbitrary screw dislocation motion near a crack edge do exist[7-9J, but the cracks
considered are stationary, thus limiting insight into crack propagation.

This article, therefore, performs two tasks in a preliminary study of dislocation-crack
edge interaction in dynamic brittle fracture and crack propagation: first, it presents an
approximate solution for the basic problem of largely arbitrary screw dislocation motion
near a propagating semi-infinite Mode III crack. The crack and dislocation exist initially
in equilibrium in an unbounded, isotropic, homogeneous, linearly elastic plane. The
dislocation begins to move after it receives the first signal that the crack has started to
propagate. This assumption is made only for illustration; the solution technique itself is
rather general.

Then, this article applies the basic problem solution to the case of a screw dislocation
array surrounding a crack subjected to SH-wave diffraction. Dislocation force concepts
are used to prescribe the dislocation motions. The dynamic stress intensity factor and the
dislocation trajectories are then studied in view of crack and dislocation speeds. The basic
problem is formulated in the next section, and then solved by a superposition-based scheme
which allows the use of much previous analysis.

2. BASIC PROBLEM FORMULATION

Consider the unbounded plane in Fig. l(a) containing a crack defined by the Cartesian
coordinates (X ll X2) as X2 = 0, XI < 0. For s < 0, where s = (rotational wave speed) x (time),
the crack is in equilibrium with a single screw dislocation of Burger's vector magnitude b.
As shown in Fig. l(a), the polar coordinates of the dislocation with respect to the crack
edge are (d,"'). For s > 0, the crack propagates in Mode III along the positive xI-axis so
that the instantaneous position of its edge is X2 = 0, XI = C(s). The function C is continuous,
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Fig. 1. (a) Dislocation-crack edge geometry. (b) Dislocation-crack edge parameters.

single-valued, and exhibits the properties C(o) =°and °~ C < I, 5 ~ 0, where (') denotes
5-differentiation. These properties guarantee that the crack edge does not retreat along the
x I-axis and, in view of the definition of 5, that it does not reach the rotational wave speed.

The propagating crack radiates a cylindrical rotational wave which reaches the
dislocation position at 5 = d. At 5 = 50 ~ d, the dislocation begins to move along the
continuous, piecewise smooth trajectory r shown in Fig. l(a). In terms of the path-variable
coordinates (S, N), the dislocation edge for 5 > 50 can then be defined as N = 0, S = D(s).

The function D is continuous, single-valued, and exhibits the properties D(50) =°and°~ D < I, 5 > 50'
The equations governing this process for 5 > °are

V2
W + ~b'(N)H(D - S) - W= 0,

J1
(Ia,b)

for all x except X 2 = 0, XI < C, where

(2)

Here W(X,5) and wo(x) are the out-of-plane displacements for 5 > °and 5 < 0, X = (x I' x 2)

is the position vector of points in the plane, and 1k are tractions defined by

(k = 1,2). (3)

The parameter J1 is the shear modulus, V2 is the Laplacian operator, and the non­
homogeneous term in eqn (ta) is the Burridge-Knopoff[lO] dislocation body-force
equivalent, where 1J and H are the Dirac and Heaviside functions, and ()' denotes
differentiation with respect to the argument. In addition, we require that w satisfy
appropriate radiation conditions.

3. FORMAL SOLUTION OF BASIC PROBLEM BY SUPERPOSITION

Consider now the function Wb(X,5) which satisfies everywhere in x the equations

(4)

for 5 > 50' Then, consider the functions wc(X' 5) and w~(x, 5) which for 5 > 0 are both defined
by
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(5)

everywhere in x except X2 = 0, Xl < C and X2 = 0, 0 < Xl < C where, respectively

(6a, b)

In addition, these functions satisfy appropriate radiation conditions. By superposition it is
clear that the combination Wb + We + w~ + WO satisfies eqns (1)-(3) for w.

Equations (4) show that Wb is the solution for the transient problem of a dislocation
which appears instantaneously when 5 = So at the point (S, N) = 0 in a crack-free plane
and then moves along the trajectory r. This problem has been treated in Ref. [11] for the
case So = O. Thus, by a simple argument shift, it can be shown that

i"
.

1 dr Dr
21twb = b - dN J 2 2 dt,

So r (r - r )
r = 5 - t, r = Ix - XI (7a,c)

where the position vector X = (X 1, X 2) locates points S = D(t) on r. The parameter t* is
defined by

under the restriction

t* = s - r[D(t*)]

1 + Dr/(D) ~ O.

(8)

(9)

Relation (9) can be violated only if the dislocation nears (r' < 0) a point x at a speed which
exceeds (1) > 1) the rotational wave speed, a possibility which has been precluded here.

The function WO is, of course, the equilibrium solution for the stationary crack and
dislocation. It has been obtained in Ref. [5] by conformal mappin~ techniques as

(
Jz + Jdeit/l/2)

21two = bImln . ,Jz - Jde-·';/2 (10)

With (Wb, WO) in hand, the basic problem is reduced to finding the functions (w" w~). This
task is accomplished in Sections 4-7.

4. FORMAL SOLUTIONS FOR We' w~

Standard Green's function methods readily lead to the formal solution

(11)

of eqn (5). Here (u, t) correspond to (Xl' s) and the integration area A is that portion of the
u-t plane where both the argument of the radical is positive and T2 is defined. From Ref.
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[12J it can be shown that, for the case of wc ' T2c for X2 == 0 is given by eqn (6a) when
x I < C, by the relation

1 fK (v - ~ v + ~) .j(K - v)T2c == T2b -,-,-- dt"
rr.j(Y/ - K) L .J2.j2 '7 - v

(12)

when C < x I < s, and vanishes otherwise. For the case of w~, T~c for x 2 = 0 is given by
eqn (6b) when 0 < XI < C, by the relation

Tg
c
= 1 jK Tg(v - ~, v + ~).j(K - v) dv

n.j(Y/ - Kd~ .j2.j2 Y/ - v
(I J)

when C < XI < s, and vanishes otherwise. In eqns (12) and (13) (~,'7) are the characteristic
variables

(14)

and '7 = K(~) defines the ~-Y/ plane trajectory of the crack edge. Therefore, K is the solution
to

K - ~ == .j2C(K.j~ ~) (15)

which follows from the substitution of eqn (14) into the relation X I = C. In eqn (12),

Y/ = L(~) defines the ~-Y/ plane trajectory for the intersection of the stress wavefront
radiating from the initial dislocation position (5, N) = 0 and the crack plane X2 = o.
Therefore, L can be obtained from eqn (14) and Fig. I(a) as

dl = dcos l/I, d2 = dsinl/l. (16)

For purposes of studying solution behavior, the formal combinations of eqns (II H 13) are,
while exact, inconvenient. As a first step in getting these combinations into approximate
but more tractable forms, eqn (12) is examined in the next section.

5. SIMPLIFICATION OF T2<

In Fig. I(b) we see that

r = Ix - XI = IY - YI (17)

where Y = (YI' Y2) is the position vector in terms of a Cartesian coordinate system centered
at the point (5, N) = 0 and aligned with the (5, N)-directions there, while Y = (YI , Y2 )

locates points on the dislocation trajectory r. Upon substitution of eqn (17) into eqn (7a)
in view of Fig. l(b), it is easily shown that on r and for X2 = 0, respectively

:~ = sin ({J - <1», (18a,b)



Dislocation-crack edge interaction in dynamic brittle fracture and crack propagation 611

where tP is the slope angle of r at (S, N) = 0 with respect to the x 1-axis. Using these results
along with eqn (8), and then substituting eqn (7a) into the right-hand side of eqn (12) along
with the variable change v = ~ - .J2u yields the expression

- Jib f' .a I IV B - U
Tlc = D :lA. 2 Xl 2 X2n2.J(xl - CI ) So u,/, .J[2(B + X I)] -CI u + + U I

X J(u + C I ) F(u) dudt (19)
V - u XI + U

for C < x I < s, where x I is small. In eqn (19)

B = S - XI - t,
1Bl - Xl

V=2B+X
I

'

CI == C(sd,

F(u) == X sin(q, - p - 0) + sin(q, - p)
u

X = IXI (20)

where, as seen in Fig. l(b), (X,0) are the polar coordinates of the trajectory points X with
respect to the initial crack edge and Pis the slope angle of the trajectory with respect to
the YI-axis. The instants (s1> t*) follow from the equations

t* == s - Xl + C I - rr (21)

where ()* denotes a quantity evaluated at t == t*, S == D(t*), and (rl,col) defined by

(22)

are the polar coordinates of the trajectory points X at S = D(t) with respect to the point
x == (ChO).

The u-integral in eqn (19) is along the integrand branch cut - C1 < u < V, and the
integrand itself exhibits simple poles at u == - Xl < 0 and u == - X I ± ilX 11, and as
indicated by the Principal Value integration, a point singularity on the branch cut at u = O.
Formal integration can be performed by Cauchy residue theory. Evaluation of the u = - X I

residue in view of eqn (18) and substituting it into the right-hand side of eqn (19) gives a
result which is identical in form to the negative of Tlb when Xl = O. Evaluation of the
residues of the other simple poles, and substitution of them into the right-hand side of eqn
(19) gives

Z == Xei9 (23)

(24)

The parameters (ro, coo) are the polar coordinates of the trajectory points X at S = D(t)
with respect to the point (Xl' 0). Study of the q,-derivative in eqn (23) in view of Fig. l(b)
shows that it is identical to

-~R 8as e Zo •
(25)

Therefore, introducing the variable change S == D(t) and recognizing that D(so) == 0 allows
eqn (23) to be integrated exactly. Combining the result with the u = Xl residue term in
eqn (19) then gives
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u

Fig. 2. Integration region in the u-t plane.

(26)

for X2 = 0, C < Xl < S, where XI is small. Here ( )0 denotes a quantity evaluated at l = So.

(S, N) = O.

6. SIMPLIFICATION OF w,

With eqn (26) available, eqn (11) for the case We can now be simplified. Figure 2 shows
a schematic of the integration area A in the u-t plane, when x lies within the region
corresponding to the interior of the cylindrical shear wave generated by the dislocation
signal diffraction. Equation (6a) defines T2e in the portion designated as AI' while eqn (26)
is valid in the portion A2 . Since the term - T2b appears in both equations, i.e. everywhere
in A, its contribution to the right-hand side of eqn (11) involves Wb' The more interesting
contribution to We' therefore, is in the second term in eqn (26).

By redefining the characteristic variables (~, t]) in terms of the integration variables
(u, t), it is easily shown in view of Fig. 2 that both contributions of the second term in eqn
(26) to the right-hand side of eqn (11) have the form

)
d~ d~(Vo

.J(M - yt).J(t] - K) .J(s - X I - .J2~)
(27)

where M(~) and t* are now given by

x = Ixl (281

while (~I' ~2) can be obtained by solving, respectively, the relations

M=K, L=K (29a. b)

for ~. It is readily shown that the (ro, (Vo)-dependent term in eqn (27) can be written as

1 2 [(.J2X I + t] - ~)cos (V21 + .J2X2 sin w21 J. (30)
(yt - ~ - .J2XIl2 + 2X 2 .

The t]-integration in eqn (27) is now recognized as an integration along the branch cut
K < yt < M of an integrand which exhibits simple poles at yt = ~ + .J2X I ± i.J2\X 21.
Formal integration can be performed by means of Cauchy residue theory. Evaluation of
these residues and substitution into the ~-integral gives a complicated expression. This
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can, however, be simplified by reintroducing u as an integration variable through the
substitution 5 - ..j2e = u, and by defining the parameters (rz,(I)z) and (r3' (1)3) as follows:

(31)

(32)

The result is that the contribution of the second term in eqn (26) to We can be written as

(33)

Here (rz,(I)z) are the polar coordinates of trajectory points X with respect to the point
x =(ez, 0) and the instants (5z, t*) are now defined by

t* =5 - U + eI - r;. (34)

In view of eqns (15), (21) and (28), (uI,uz) can be derived from the relations

(35)

where Tk = 5 - Uk and it can be shown that 51 > 5z.

7. SIMPLIFICATION OF 71<.w~

Similar approximate integration schemes can be applied to eqns (11) and (13) and,
indeed, are simpler owing to the less complicated form of n. The results are that for
Xz = 0, e < Xl < 5, XI small

T~ = _ T~ _ p.b Re(:l.3.l\0
e 21t..j(x l - el ) Zo }

where from eqns (10) and (4a), we find that along Xz = 0

(36)

(37)

for Xl > 0 and vanishes otherwise. Similarly, for all X < 5, the contribution of the second
term in eqn (36) to w~ is

(38)

With eqns (36)-(38) at hand, the solution to the basic problem described by eqns (1 )-(3)
is complete, while its validity, strictly speaking, is confined to the vicinity of the initial
crack edge, the solution contains the fully transient nature which would result from exact
integrations of eqns (12) and (13). The situation to which this solution will be applied is
discussed in the next section.
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Fig. 3. SH-wave incident upon crack edge.

8. A DIFFRACTION PROBLEM APPLICATION

It is well known, e.g. Ref. [13], that, due to the dynamic overshoot phenomenon, the
diffraction of stress waves by a crack edge is an important source of dynamic brittle
fracture. We, therefore, now consider the problem illustrated in Fig. 3: a plane SH-wave
of uniform stress To impinges upon the same crack-dislocation combination considered
in the basic problem, and reaches the crack edge at s = 0. The out-of-plane displacement
generated by the wave is

(39)

where a is the wavefront angle made with the crack plane. If the dislocation were not
present, then the problem would reduce to one of crack propagation initiated at s = 0 by
wave diffraction. The solution to this type of problem has been studied[12], and can be
written as Wt + w?, where Wj(x,s) is given by eqns (11) and (12), with T2b replaced by T2i

and the lower integration limit L replaced by - K~, where

1 - sina
K=

1 + sina'
(40)

These formal relations can be simplified in a manner similar to that employed above, with
the exact result that

for x 2 = 0, C < Xl < s, where

(42)

while the equation corresponding to eqn (33) is

(43)

where (ul,Cd are again defined by eqns (35), (20) and (21). Equations (1)-(3) show clearly
that the solution for the complete problem shown in Fig. 3 is simply W

O + w?(s < 0) and
W + w? + W 1(s > 0).

The dislocation motion is as yet largely arbitrary, so for purposes of illustration, we
now impose the following behavior: The dislocation starts to move when the cylindrical
rotational wave generated at the crack edge at s = 0 arrives, it subsequently follows a
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Fig. 4. (a) Dislocation position as defined by crack edge position. (b) Parameters for dynamic stress
intensity factor.

trajectory r such that its velocity is always directed toward the crack edge, and stops if it
reaches the crack edge. That is

50 = d (44)

and, as Fig. 4(a) shows, the dislocation trajectory tangent passes through the instantan.eous
crack edge position. Moreover, the sign of t/J determines the sign of X2'

Assumption of this motion is based on the quasi-static result[5] that the force on the
dislocation in a cracked but otherwise undisturbed unbounded medium is a maximum
along the straight line between the dislocation and the crack edge. In a dynamic analysis,
of course, there is a delay due to signal travel time, so that, as Fig. 4(a) indicates, the
dislocation position X at 5 = 5 is defined by the crack edge at 5 = S < 5. It can be shown
that the differential equation for r is

A. = de
dD

(45a,b)

where X 2 = X 2(X 1) and ± denotes the sign of -X;/X2 • We here take (C,D) as the
constants (Co, Do), and eqn (45a) is then readily integrated for the case ;, #= I to yield the
equation pair

2D' ( _ d) _ (d - Ad l ) (d + d l ) 1 +), (d - d)) )-), = 0
0 5 I 12 + 1 • y + 1 ,y ,

-I', -I. -,I,

X D ( _ d) = (d - Ad)) _ (d - d1) )-),) + 0 s 1 _ ,1.2 1 _;, y .

(46a, b)

(46c)

For a given 5, eqn (46a) is solved for X 2' whereupon eqn (46c) yields X I' For;' = 1 the
results are

, 1
2Do(s - d) + (d - ddlny + 2(d + dd(y2 - I) = 0 (47a)

(47b)

Equations (46) and (47) can be used to show that the dislocation never reaches the crack
surface when ;. ~ 1. For A. < I however, contact occurs at XI = XL when 5 = SL. where

(48)

These results are employed in the next section to study the dynamic stress intensity factor.

SAl> 23:5-£
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9. DYNAMIC STRESS INTENSITY FACTOR

We define the dynamic stress intensity factor K 2 as

(49)

Based on this definition, eqns (26), (36), (37), (41) and a limit process discussed in Ref. [12]
it is readily shown that when J. ;;: I

s < 0: (50al

(50b,c)

where

(Sad)

2To.J . J(s)kj =-- (l - Co) - cos IX,
n j..t. Ro

(51 )

and Ro is any microstructural characteristic length. As Fig. 4(b) shows, (r, w)o and (r, w)*

are the polar coordinates of, respectively, the initial dislocation position and the dislocation
position at s = s* with respect to the crack edge. The equation

(52)

indicates that a signal must leave the dislocation at s* in order to arrive at the crack edge
at s. Finally, Sc is the instant that the crack edge is first aware of the dislocation. For i. < L
these results must be modified by recognizing that eqn (SOd) holds only for Sc :::; S :::; SL'

For s ;;: Sl-

(53)

In words, eqns (50)-(53) can be explained as follows: for s < 0 the equilibrium dislocation
governs K2, but for 0 < s :::; Sc> K 2 has two components, ki due to the SH-wave diffraction
and kb due to the removal of the equilibrium dislocation stress field by the propagating
crack. For s ;;: Sc> kb is now due to the removal of the moving dislocation stress field. In
addition, when S ;;: SL for). > 1, K 2 is governed only by the SH-wave diffraction. It is also
noted that, in general, K 2 behaves continuously except at crack propagation initiation
(s =0).

10. DYNAMIC STRESS INTENSITY FACTOR FOR A DISLOCATION ARRAY

To generalize the expressions for K 2 to an n-member array, one need only treat the
parameters (d, 1/1, b,Do) as array variables, and sum kb with respect to them. To illustrate
such an array, we consider two cases.

(l) The dislocations are arrayed around the circumference of a circle of radius Ro
centered at the initial crack edge, Le. dlR o = 1,11/11 < n.
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Fig. 5. Dislocation trajectories for case (1).
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08

(2) The dislocations are arrayed around the same circle, except that its center is now
a distance Ro ahead of the initial crack edge, i.e. d/Ro = 2 cos ifI, Iifll < 7[/2.

In both cases, the dislocations are evenly spaced around the circles, are distributed
symmetrically with respect to the xl-axis, and move with the same speed Do.

In Fig. 5, the motion of the dislocations when ifI > 0 for case (1) is illustrated when
n = 20, Co = 0.25 and either ..1. = 1.67 or 0.625, where () denotes nondimensionalization
with respect to Ro. The curves in Fig. 5 are examples of dislocation trajectories, but
dislocations which have reached the crack surface are deleted. Corresponding motions for
case (2) are given in Fig. 6.

Both figures show that, as should be expected, the dislocation arrays form a band
near the crack surface, and eventually collapse onto it if ..1. < I. These results agree with
observations of inelastic zone shapes after crack propagation has ceased[l].

To show the effect of dislocation arrays on the dynamic stress intensity factor, we
consider again cases (I) and (2), but with n = 38 and the physically reasonable dimensionless
parameter values

0:=0 (54)

chosen. In Fig. 7, the SH-wave diffraction contribution kj is plotted vs s, along with the
envelopes of K2 itself for cases (I) and (2), where ..1. = 1.67 and 0.625. It is seen that the
dislocation arrays have a noticeable effect on K 2 , either intensifying or relaxing it in
accordance with the sign of b/To. It is also seen, however, that the effect dies out in little
more than the rotational wave travel time from the initial crack edge position to the initial
dislocation array periphery.

11. SUMMARY

This article considered dislocation-crack edge interaction in inelastic zones formed
near the edges of propagating cracks during dynamic brittle fracture. In particular, it
presented the exact transient solution of a screw dislocation moving near the edge of a
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propagating Mode III crack, and applied it to a problem of screw dislocation arrays and
a crack whose propagation is triggered by plane SH-wave diffraction.

Under a simple law based on a dislocation force concept, it was shown in light of this
problem that, if the dislocations move at speeds greater than the crack edge, they eventually
reach the crack surface and cease to affect the dynamic stress intensity factor. Otherwise,
the dislocations only approach the crack surface asymptotically. The resultant array
configurations in both cases appear to agree with inelastic zone shapes noted near arrested
cracks. It was also shown that the arrays have a noticeable if brief effect on the dynamic
stress intensity factor.

The results of this article were preliminary in scope. Future efforts wilJ consider
experimentaly observed dislocation densities and inelastic zone shapes. In addition, the
present results accounted only for those dislocations existing initially around the crack
edge, and assumed that their motion was independent of the original slip planes. Future
efforts will consider the new inelastic zone area which is generated during crack propagation.
Finally, the criteria for fracture initiation and crack propagation will be considered. All
these efforts, however, will be based on the expressions presented here.
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